Discussion Problems for Math 180

Tuesday, December 2, 2014

1. Sketch a graph of the function

$$
f(x)=\frac{\sqrt[3]{x^{3}+1}}{x}
$$

Label any critical points, inflection points, horizontal or vertical asymptotes, etc. Provide complete justification for everything.
2. Recall that, for a real number x, floor (x) is the greatest integer less than or equal to x, and ceiling (x) is the smallest integer greater than or equal to x. Sketch a graph of the function

$$
g(x)=\operatorname{ceiling}(x)-\text { floor }(x)
$$

on the domain $[-5,5]$.
3. Calculate

$$
\lim _{x \rightarrow 1} \frac{\frac{1}{x}-1}{x-1} .
$$

4. Interpret your answer to number three as the derivative of a function at a point. Then calculate this derivative using derivative rules and check that your answer agrees.
5. Consider the function

$$
h(x)= \begin{cases}1 & \text { if } x<0 \\ a x+1 & \text { if } 0 \leq x<1, \\ x^{2}-x+a+1 & \text { if } 1 \leq x\end{cases}
$$

For which values of a, if any, is this function continuous? Differentiable?
6. Estimate $\sqrt{62}$ using a local linear approximation.
7. Find all points on the curve

$$
y^{2}=2 x^{2}-x^{4}+8
$$

where the tangent line is either horizontal or vertical. (Hint: there are eight such points in all.)
8. Calculate derivatives:
(a) $\sin ^{2}(x) \cos ^{2}(x)$
(b) $\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$
(c) $3 \arctan (4 x)-4 \arctan (3 x)$
(d) $\frac{\sqrt{x^{2}-1}}{x}$
(e) $\left(\frac{x^{4}-1}{x^{4}+1}\right)^{8}$

